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GIVEN:

FIG. 1. Idealized stationary wind turbine (ground reference frame).

An idealized wind turbine fixed to the ground is extracting constant power, Pnet (W ), from a steady and uniform
wind having constant speed equal to Vwind (m/s). The density of the air is ρ (kg/m3), and the swept area of the
rotor disk is S (m2). The turbine slows the airflow down by an amount equal to ∆V (m/s), such that the air speed
far downstream is reduced to Vwind −∆V . This negative acceleration of the airflow results in a thrust force of the air

acting on the rotor in the direction of the wind equal to F⃗t (N). See figure 1. Additional parameters are given as:

a =
1

2

∆V

Vwind
; Dimensionless “Axial Induction Factor.” (1)

V = Vwind − 1

2
∆V ; Speed of the air passing through the rotor disk (m/s).a (2)

ṁ = ρSV ; Mass flow rate of air passing through the rotor disk (kg/s). (3)

a It is generally accepted that the velocity of the air as it passes through an (idealized) actuator disk, V , (for a propeller or turbine rotor,)
has a magnitude halfway between the far upstream velocity, V1, and the far downstream velocity, V2, i.e. V = 1/2(V1 + V2). The
mathematical proof of this concept is not provided in this paper.
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FIND:

Part A: Derive dimensionless equations, each written as a function of the axial induction factor a, for: 1.) the
coefficient of thrust force of the air acting on the rotor disk, CFt = f(a); and 2.) the coefficient of net power extracted
from the wind, CP net = f(a).

Part B: Determine: 1.) the maximum possible net power coefficient, CPnetmax; and 2.) the axial induction factor
value, anetmax, required to maximize the net power. The reference constants to be used for normalizing the derived
equations into dimensionless form are given as:

Pwind =
1

2
ρSV 3

wind ; Total kinetic power of the wind passing through area S (W ).b (4)

Fwind =
1

2
ρSV 2

wind ; Force which satisfies the equation: Pwind = FwindVwind (N).b (5)

Assumptions:

• The air behaves as an ideal Newtonian fluid; it is incompressible and inviscid.

• The airflow is steady, laminar and adiabatic.

• The rotor acts as an ideal 100 % efficient actuator disk with zero losses.

• Losses due to swirl in the outflow and work done on the air outside the stream tube are negligible.

• The flow is considered to be axial with uniform velocity within any cross sectional area slice of the stream tube
normal to the x axis.

• A 100% efficient transmission connects the rotor to a 100% efficient electrical generator that provides Pnet power
output to a connected load.

b Vwind, Pwind and Fwind, are the reference constants used for converting the dimensional equations for velocity, power and force into
dimensionless form. The Pwind, “Power of the wind” constant, represents the kinetic power that a wind flowing freely through a
cross sectional area S possesses, as measured in the ground reference frame. The Fwind, “Force of the wind” constant, represents the
(theoretical) force that would be required to “stop the wind” and extract the full power from the wind.
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SOLUTION:

FIG. 2. Free body diagram of air passing through control volume (ground/rotor reference frame.)

In time ∆t, a discreet mass of air located far upstream from the rotor disk, ∆m, having constant speed, V1 = Vwind,
enters the control volume where negative acceleration is taking place. During the same ∆t time period, an equal
mass of air located far downstream from the rotor disk, ∆m, exits the control volume with constant lesser speed,
V2 = Vwind −∆V . See figure 2. The effective reduction in speed of mass ∆m from V1 upstream to V2 downstream,

∆V , is caused by the thrust reaction force of the rotor acting on the air inside the control volume, −⃗Ft. Applying

Newton’s second law, F⃗ = ma⃗,c and substituting the given equation for mass flow rate, ṁ = ρSV , we get an equation
for the thrust force Ft:

−⃗Ft = ∆ma⃗ ; Newton’s 2nd. Substitute average acceleration, a⃗ = ∆⃗V /∆t:c (6)

−⃗Ft = ∆m
∆⃗V

∆t
; Both −⃗Ft and ∆⃗V vectors have negative direction, so: (7)

−Ft = ∆m(
−∆V

∆t
) ; Converted from vector to scaler. Multiply both sides by −1: (8)

Ft = ∆m
∆V

∆t
; Rearrange: (9)

=
∆m

∆t
∆V ; Thrust force is mass flow rate ṁ times ∆V . (10)

= ṁ∆V ; Substitute given equation, ṁ = ρSV : (11)

= ρSV∆V ; Rearrange: (12)

Ft = ρS∆V V ; Thrust force of air acting on rotor, Ft = f(V,∆V ). (13)

c In this article, the symbol: “a” is used to represent two different parameters: 1.) the axial induction factor, and 2.) the acceleration

term in Newton’s second law equation, (F⃗ = ma⃗). Hopefully, this will not cause any confusion since the acceleration term is used only
briefly here.



4

Since all components of the turbine are 100% efficient, the net power output from the turbine, Pnet, is equal to the

power transferred from the air into the rotor, Par. Applying the general vector equation for power, P = F⃗ · V⃗ , to the
force acting on the air passing through the rotor disk, we get an equation for the net power:

Pra = −⃗Ft · V⃗ ; Power transferred from rotor into the air; vector form. (14)

Pra = −FtV ; Scalar form. Negative power. But Pra = −Par, so: (15)

Par = FtV = Pnet ; Power transferred from air into the rotor. Substitute Ft: (16)

Pnet = ρS∆V V 2 ; Net wind power extracted by turbine, Pnet = f(V,∆V ). (17)

Substituting the given equation for V into the equations for Ft and Pnet yields:

V = Vwind − 1

2
∆V ; Given equation for V . Substitute into Ft and Pnet: (18)

Ft = ρS∆V (Vwind − 1

2
∆V ) ; Thrust force of air on rotor, Ft = f(Vwind,∆V ), and (19)

Pnet = ρS∆V (Vwind − 1

2
∆V )2 ; Net power extracted by turbine, Pnet = f(Vwind,∆V ). (20)

To normalize the equations into dimensionless form, we solve the given axial induction factor equation for ∆V , and
substitute that term into the equations. First for Ft:

a =
1

2

∆V

Vwind
; Given equation for a. Re-arrange: (21)

∆V = 2aVwind ; ∆V = f(Vwind, a). Substitute into Ft equation: (22)

Ft = ρS(2aVwind)
(
Vwind − 1

2
(2aVwind)

)
; Ft = f(Vwind, a). Gather Vwind terms: (23)

= ρSV 2
wind2a(1− a) ; Cleverly multiply and divide by 2: (24)

=
1

2
ρSV 2

wind · 4a(1− a) ; Notice that first term is equal to Fwind, so: (25)

Ft = Fwind · CFt ; Generic equation for rotor thrust force, Ft, where: (26)[
CFt = 4a(1− a)

]
; Answer A1: CFt = f(a). (27)

Next substitute ∆V = 2aVwind into Pnet = f(Vwind,∆V ):

Pnet = ρS(2aVwind)(Vwind − 1

2
(2aVwind))

2 ; Pnet = f(Vwind, a). Gather Vwind terms: (28)

= ρSV 3
wind2a(1− a)2 ; Multiply and divide by 2: (29)

=
1

2
ρSV 3

wind · 4a(1− a)2 ; Notice that first term is equal to Pwind, so: (30)

Pnet = Pwind · CPnet ; Generic equation for net power, Pnet, where: (31)[
CPnet = 4a(1− a)2

]
; Answer A2: CPnet = f(a). (32)

Figure 3 shows a plot of CFt and CPnet. To determine the maximum possible net power coefficient, we take the
derivative of the CPnet = f(a) equation with respect to a, set the resulting equation equal to zero, then solve for the
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FIG. 3. Plot of functions CFt and CPnet vs Axial Induction Factor a.

roots:

CPnet = 4a(1− a)2 ; CPnet = f(a). First expand into a polynomial: (33)

= 4a(1− a)(1− a) ; (34)

= 4a(1− 2a+ a2) ; (35)

CPnet = 4a3 − 8a2 + 4a ; CPnet in polynomial form. Take the derivative: (36)

d(CPnet)

da
= 12a2 − 16a+ 4 ; Derivative of CPnet. Set equal to 0 and divide by 4: (37)

0 = 3a2 − 4a+ 1 ; Roots of this equation are anetmax and anetmin of CPnet. (38)

roots =
−B ±

√
B2 − 4AC

2A
; Quadratic equation. Use: A = 3, B = −4 and C = 1: (39)

=
−(−4)±

√
(−4)2 − 4(3)(1)

2(3)
(40)

=
4±

√
16− 12

6
; (41)

=
1

6
(4± 2) ; (42)

=
1

3
(2± 1) ; (43)

roots = 1,
1

3
; Root values: 1 = anetmin and 1/3 = anetmax. (44)[

anetmax =
1

3

]
; Answer B2: Value of a which maximizes CPnet. (45)
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Plugging anetmax into CPnet = f(a) reveals the maximum possible net power coefficient:

CPnet = 4a(1− a)2 ; CPnet = f(a). Plug in anetmax = 1/3: (46)

CPnetmax = 4

(
1

3

)(
1− 1

3

)2

; (47)

=
4

3

(
2

3

)2

; (48)

=
4

3

(
4

9

)
; (49)[

CPnetmax =
16

27

]
; Answer B1: CPnetmax = 16/27 = Betz Limit. (50)


